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This Integration Insight provides a brief overview of the most popular modelling techniques used to analyse 
complex real-world problems, as well as some less popular but highly relevant techniques. The modelling methods 
are divided into three categories, with each encompassing a number of methods, as follows: 1) Qualitative 
Aggregate Models (Soft Systems Methodology, Concept Maps and Mind Mapping, Scenario Planning, Causal (Loop) 
Diagrams), 2) Quantitative Aggregate Models (Function fitting and Regression, Bayesian Nets, System of 
differential equations / Dynamical systems, System Dynamics, Evolutionary Algorithms) and 3) Individual Oriented 
Models (Cellular Automata, Microsimulation, Agent Based Models, Discrete Event Simulation, Social Network 
Analysis). Each technique is broadly described with example uses, key attributes and reference material.  

 

PREFACE  

by Gabriele Bammer 

 

Modelling is one key approach to better understanding and responding to complex real 
world problems, be they in national and international security, population health, 
education, environment or the myriad other dimensions of human endeavour. 
Integration and Implementation Sciences (I2S) is a discipline which supports research 
on such problems by bringing together disciplinary and stakeholder knowledge, 
understanding and managing unknowns, and providing integrated research support 
for policy and practice change. Modelling is a central element of I2S, as it can be used 
to address each of these three domains. In other words, models can be used to 
synthesise knowledge, to better comprehend unknowns and their consequences, and 
to provide decision support. 

Models can only ever be partial representations of the real world, but different 
modelling approaches provide handles on different facets of a problem’s complexity. 
Both the process of model building and the model itself provide a systematic way of 
developing a more comprehensive understanding of key aspects of the problem. 
Nevertheless, it is difficult to find accounts comparing modelling methods, the 
elements of complexity that they tackle, and their strengths and weaknesses. This 
seems to be a fundamental gap, one which this compendium starts to address. 

The aim of this document is to provide a solid basis for discussion and additional work 
in refining and expanding the compendium. Everyone will not agree with the 
categorisations presented here, and there are other modelling methods which could 
be included. Comments, discussion and suggestions for additions are therefore very 
welcome. 

The stimulus for producing this compendium comes from the ARC Centre of Excellence 
in Policing and Security, which recognises that it can learn from techniques developed 
in environment, population health and elsewhere. Similarly, environment researchers 
can learn from approaches to security and population health, and so on. The 
compendium therefore has relevance across the board. 

This Integration Insight is a departure from those produced previously. While it is still 
an overview of techniques, this is a substantial compilation rather than a brief digest. 
The importance of the topic warrants this expansion in the role of the Integration 
Insights series. 
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INTRODUCTION Terrorism, drug use and climate change are all examples of real world problems that 
are particularly difficult to analyse and resolve, because they arise from the behaviour 
of complex systems. They have several characteristic features, including:  

• They arise from the behaviour of people each making individual decisions in 
response to their beliefs and objectives and the information they have 
about their situation;  

• There are multiple perspectives about what the problem is and why it 
exists; 

• There are interactions between aspects of the problem, with the result that 
a change to address one part of the problem has unintended immediate 
effects on another facet and potentially counterintuitive future 
consequences. 

There are many different systems thinking techniques which can be used to 
understand, communicate and forecast particular aspects of a problem. Each 
technique highlights specific characteristics and hides others. An example 
demonstrates how different modelling approaches are associated with very 
different ways of thinking about an issue (as reported in Richmond 1993, pg 128): 

A popular economic journal published the research of a noted economist 
who had developed a very sophisticated econometric model designed to 
predict milk production in the United States. The model contained a raft 
of macroeconomic variables woven together in a set of complex 
equations. But nowhere in that model did cows appear. If one asks how 
milk is actually generated, one discovers that cows are absolutely 
essential to the process. Thinking operationally about milk production, 
one would focus first on cows, then on the rhythms associated with 
farmers' decisions to increase and decrease herd size, the relations 
governing milk productivity per cow, and so on. 

Before choosing a technique, you need to know both what you want to achieve by 
modelling and which aspects of the system you want to highlight. For many 
problems, it may be most useful to apply several different techniques to build a 
richer understanding. 

This guide provides a brief overview of the most popular modelling techniques used 
to analyse complex real-world problems, as well as some less popular but highly 
relevant techniques. It does not, however, deal with all the modelling methods that 
could be useful. Each technique is broadly described with example uses and key 
attributes. Where appropriate, the guide also identifies reference material and 
software to help you implement the chosen technique(s). 

The modelling methods are divided into three categories, with each encompassing 
a number of methods, as follows: 

Qualitative Aggregate Models 

Soft Systems Methodology 
Concept Maps and Mind Mapping 
Scenario Planning 
Causal (Loop) Diagrams 

Quantitative Aggregate Models 

Function fitting and Regression 
Bayesian Nets 
System of differential equations / Dynamical systems 
System Dynamics 
Evolutionary Algorithms 
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Individual Oriented Models 

Cellular Automata 
Microsimulation 
Agent Based Models 
Discrete Event Simulation 
Social Network Analysis 

Before describing each of these, additional background information is provided 
about systems and models. 

What is a 
System? 

A system is any group of entities that acts together. In many systems, the group 
acts together for a purpose. For example, control systems are used in engineering 
to regulate extreme behaviour of some group of physical components 

In complex systems, the behaviour of the system arises naturally from the 
interactions between the components. This is referred to as emergence because, in 
some sense, the characteristics of the system are distinct from the characteristics of 
the individuals and ‘emerge’ from the interactions. Examples include the price set 
by an economic market (arising from individual buying and selling decisions), 
oscillations in the populations of predators, mob rioting, and the average 
throughput of an assembly line. 

What is a Model? A model is any representation of relevant features of the entity under 
consideration. The most effective model will depend on the characteristics of the 
system to be modelled and the question to be answered. Sufficient detail is 
required to preserve those aspects relevant to the question, but other details must 
be excluded or the model will be as complicated as the original entity. 

For the purposes of this guide, a model is primarily a description of the relationship 
between system components. For complex systems, the model is expected to also 
demonstrate the behaviours of the system being modelled. 

A model generally refers to the system as it currently exists. That is, models can be 
used to consider ways in which the system may change as the strengths of 
relationships between components change, but cannot be used to examine systems 
with a different set of components or interactions. In these cases, a different model 
would be required. For example, a model can assist with options that change the 
size of an incentive, but a new incentive requires a change to the model structure. 

Why Model? There are many reasons why an analyst or decision maker may wish to model a 
system (see Epstein 2008 for another perspective). These reasons also impact on 
the choice of modelling technique, as different approaches are more effective in 
achieving specific purposes. 

A formal modelling task can be useful in extracting information about the system 
from the various people with knowledge of the system, each with their own 
perspective. That is, development of a model provides a methodical approach to 
identify perceptions about the key aspects of the system. 

More generally, a model can stimulate two-way or group communication about 
how a system works. For example, a scale physical model of a proposed building 
is an efficient way for an architect to convey their vision to prospective clients 
and facilitate discussion about the features of the building. For a complex system, 
this communication may be achieved with the design of a model, rather than the 
model itself. That is, the structure, interaction rules and other aspects that define 
the model provide a shared understanding of the key relationships and other 
features of the system. This communication may be achieved regardless of 
whether the model is actually built, simply by formally participating in the model 
design. 
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Models can also be used to investigate and falsify competing explanations for 
certain behaviour or features in the system. To achieve this, models that 
represent each proposed explanation are built to determine whether the proposal 
does, in fact, produce the behaviour in question. Of course, generating the 
required behaviour does not imply the explanation is ‘true’, but inability may 
suggest the explanation is false. 

For those systems where there is behaviour data for the system and its 
components, a model can be used for data compression. In a sense, the model 
summarises all of this data. This compression results in a loss of information, but 
the model can be supplemented with information about its accuracy at various 
tolerance levels and/or retained complete data for more extreme situations that 
are poorly represented by the model. 

Projections and ‘what if?’ analysis can only be conducted where a model has been 
validated against detailed data sets. Projections use the model tuned to current 
system parameters to estimate future system behaviour. Input parameters can 
also be varied to identify possible consequences of changing the system slightly. 
Such estimates assume that the model accurately includes all relevant structures 
and relationships, and that parameters are correct. The complex behaviour of a 
system makes extrapolations particularly risky if more than one parameter is 
varied or any parameter is varied outside of the values available in the validation 
dataset. Due to the wide use and reporting of economic projections, this type of 
analysis is familiar and may be the most common ‘front of mind’ use of modelling, 
despite its limited value for many problems. 

For policy and research integration, the discipline of creating an explicit model 
may provide the greatest benefit. This is particularly true where the modelling 
software or documentation provides a clear description of the model structure. 
While most of the modelling techniques described in this guide can be 
implemented efficiently in JAVA, C++ or some other programming language, the 
guide focuses on purpose built software with visual construction of model 
structure and built in reporting as these features facilitate communication 
between modellers and other participants. 

BUILDING A 
MODEL 

For policy and research integration, understanding and communication may be 
the major objectives and much of the modelling benefit arises from the 
development process rather than directly from the model itself. This process has 
several steps. The implementation of each step differs substantially depending on 
the purpose of the model and the modelling technique to be used, but each step 
must be explicitly considered. 

Initialisation The first step is to define the problem. Without a clear problem or question to be 
answered, it is difficult to assess the relevance of various system components and 
relationships, so the model is likely to be confused and too detailed.  

The participants in the modelling project must also be identified early in the 
project, together with their roles. Participants are likely to include decision 
makers responsible for implementing any recommendations from the project, 
subject matter experts and modelling specialists. Subject matter experts include 
people affected by the system being modelled (such as consumers), operational 
managers who make administrative decisions within the system and data 
managers. 

As for any other project, many of the participants will have limited time and may 
be independent of the organisation developing the model. Their involvement may 
be constrained, and obtaining their interest and commitment is necessary for the 
model to be useful. Typically, the modeller and a coordinator with some subject 
matter knowledge would devote substantial time to the project with other 
participants involved at key points only. 
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Design The second phase is to design the model. The modeller and subject matter 
experts must agree on the factors to be included in the model and the 
assumptions concerning the factors excluded from the model. Other scope 
decisions may include the time frame for dynamic models and whether the model 
should be qualitative or quantitative.  

The objective of the design phase is to teach the modeller how the system 
operates. The design should include a description of the pattern of influences 
between system components. One useful approach for many systems is to trace 
possible paths of people (in social systems) or objects through the system and 
identifying branching points in these paths and the factors that determine which 
branch occurs. 

This knowledge can be captured with some of the qualitative modelling 
techniques described below. The design, or business rules, should be agreed by 
the participants before the model is constructed. 

Build If the objective of the model is simply to understand and communicate the key 
features of a system, the design document may constitute the model and no 
separate ‘build’ phase is necessary. Generally, however, the modeller will 
construct a model that implements the design to the extent possible.  

Depending on the modelling technique, the build phase can include: 

Translate the design into the perspective of the modelling technique; 
Discover the exact relationship between the cause and effect for each 
identified relationship from research and/or data; 
Identify missing information or data; 
Construct the user interface to receive input parameters and generate 
output data and charts;  
Basic testing, including handling of extreme cases; 
Calibrate the model against historical or snapshot data; 
Preparation of technical and user documentation. 

It is unlikely that the model will be built exactly as designed. Wherever the 
implementation differs from the design, the change and the reason for that 
change should be documented. 

Confirmation In addition to basic testing, a formal validation and verification phase is 
required with all participants to confirm that the model is reasonable. This 
includes checking that:  

Change to each input individually results in an overall change of the 
expected direction and magnitude;  
Real world results that were not used in the calibration can be replicated in 
the model; 
The user interface is easy to interpret;  
Each business rule agreed in the design phase has been implemented or, if 
relevant, included in the change documentation;  
Design changes made during the build phase are appropriate; 
The question originally asked is illuminated by the model. 

As a result of the confirmation phase, further building and confirmation may 
be required. 

Application The model is then used. For models that must be ‘run’, this may involve the 
modeller running a set of scenarios and preparing a report, or distributing the 
model for participants to run directly. For conceptual models, use may be 
circulating the documentation for discussion and comment. 



 

INTEGRATION INSIGHTS #12  6 

It is likely that some relationships could not be completely determined from 

available research and data. In such cases the application phase may also 

include sensitivity analysis to assess whether the missing information has a 
significant effect on the model outcome. This analysis tests various possible 

values for the missing information and examines how the outcome varies. If 
the model is sensitive to some of the missing information, the analysis can 

also assist in identifying which information is the most important to obtain. 

QUALITATIVE 
AGGREGATE 
MODELS 

Qualitative aggregate modelling techniques are primarily used for 
understanding an issue, problem structuring, integrating different 

perspectives and communicating the system structure. While they cannot be 
used for projection, since they do not contain quantitative information, some 

further analysis may be able to identify relatively important features or 

characteristic behaviour. 

Qualitative methods can also be used in the design phase for a quantitative 

technique to identify the key relationships for which data is required. 

Soft Systems 
Methodology 

Soft Systems Methodology (SSM) was developed as a systematic approach to 

examine human problems in organisations and agree policy responses. The 
method is a straightforward process of understanding the problem, 

developing options and implementing the decision. However, there are two 

innovative methods used to elicit different perspectives on the problem from 
the group, Rich Text Pictures and CATWOE. 

A Rich Text Picture is relatively unstructured but there are some content 
requirements. It includes a boundary that limits the scope of the problem to 

be described. External constraints are listed outside the boundary. Within the 

boundary, each stakeholder is pictured with their concerns and the 
relationship with other stakeholders. 

 

 
Figure 1: A possible Rich Text Picture describing management of a community choir 
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An example is shown at Figure 1. It describes a conflict within a community 
choir where certain management functions must be undertaken for legal, 
publicity or performance reasons but there are insufficient volunteers. 

CATWOE is an acronym for customers, actors, transformation, 
Weltanschauung (or worldview), owner and environment. 

For the same example, one CATWOE response could be: customers are choir 
members and audience, actors are choir members and their friends, the 
transformation desired is to ensure essential functions are undertaken, 
worldview is that performance is the reason for the choir’s existence, owner 
of the system is the choir management committee, and the environment is 
the relevant laws. 

Key features 
What it answers: Assists groups to elicit various perspectives about 

an issue and formalises statement of problem.  

What is highlighted: Competing perspectives.  

Inputs: Opinions from group members. 

Outputs: Richer understanding of the issue and potential 
conflicts. 

Relationships: Stakeholder perspectives of the problem and 
potential solutions are explicitly elicited. 

Traps: Relies entirely on the expertise and opinions of 
group members. 

Handling uncertainty: Nil 

Data needs: Supporting information for claims made by 
stakeholders. 

Resources 
References: Checkland and Poulter 2006, Learning For Action: A 

Short Definitive Account of Soft Systems 
Methodology, and its use for Practitioners, Teachers 
and Students 

Software: None generally used.  

Concept Maps 
and Mind 
Mapping 

Concept Maps are used to structure knowledge about an issue. They can be 
conceived as a formal approach to mind mapping and knowledge extraction. Each 
concept or aspect of the issue (generally nouns) is drawn in a box, and links are 
drawn between those boxes where there is a relationship between the concepts. 
The link is annotated with a description of the relationship (often verbs). 

An example is shown at Figure 2, a section of a concept map about Sickle Cell 
Disease (Rendas 2006). This section distinguishes between the presentation of 
some acute symptoms (‘can be’) and the underlying causes (‘due to’). 

Concept maps may be maintained in electronic form so that more detailed 
information can be hyperlinked to the relevant aspect of the knowledge structure. 

Mind maps also link related concepts and ideas but use a radial hierarchy, 
generally without link annotation. A person or group brainstorms some central 
issue and the mind map diagram documents the brainstorming, so that the first 
ring expands the central issue and the second ring expands each of the issues in 
the first ring and so on. 
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Figure 2: Section of a concept map concerning Sickle Cell Disease (Rendas 2006) 

Key features 
What it answers:  What concepts are related to some central issue and the 

relationships involved.  

What is highlighted: Concepts, ideas and other aspects of knowledge.  

Inputs: The perspectives of those involved in the brainstorming 
about what is relevant. 

Outputs: Documentation of the structure of knowledge or ideas. 

Relationships: Relationships between ideas are explicitly documented 
in some mapping approaches. 

Traps: Relies entirely on the expertise and opinions of group 
members. 

Handling uncertainty: Generally nil, though ideas about what is unknown can 
be included. 

Data needs: Nil 

Resources 
Software: CMapTools, concept maps, by the Institute of Human 

Cognition (cmap.ihmc.us) 

PersonalBrain, mind mapping, but without the radial 
hierarchy, so links can connect any concepts, by 
TheBrain Technologies (www.thebrain.com) 

FreeMind, an open source mind mapping project in 
JAVA (http://freemind.sourceforge.net/wiki/ 
index.php/Main_Page) 

MindManager, a commercial mind mapping application 
(www.mindjet.com) 
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Scenario Planning Scenario Planning is a structured approach to identify plausible future situations to 
which an organisation may need to respond. That is, it concerns the external 
environment of an organisation rather than internal issues over which it has some 
control. Once these situations are identified, they can be planned for, usually 
including some way of monitoring so that the likelihood of the scenario occurring 
can be regularly reassessed. Most modelling techniques describe the current system 
and can incorporate only small variations. In contrast, scenario planning is used to 
describe possible extreme situation. 

There are several essential steps in the process. The first is to identify major trends 
and key factors that shape the environment. Each of these trends and factors is 
assessed for importance (such as strength of influence or potential impact) and for 
uncertainty about future character. Scenarios are then defined by combining 
extremes of the various trends and factors (providing they are not incompatible), 
particularly focusing on those of relatively high probability.  

Each scenario is then fleshed out, developing a description of the situation 
associated with the combination of extreme outcomes. These descriptions then 
provide the basis of a standard planning process: developing a research program, 
monitoring techniques and responses.  

Key features 
What it answers:  Plausible future situations that impact on an organisation 

but are outside the organisation’s control.  

What is highlighted: Competing perspectives.  

Inputs: Trends in factors that shape the organisation’s 
environment, such as economic and political features. 

Outputs: Set of plausible scenarios that describe the potential 
extreme situations in which the organisation may find 
itself in the future. 

Relationships: Relationships between factors are considered when 
combining factors to generate scenarios. 

Traps: Does not generate solutions. 

Handling uncertainty: Extreme situations are specifically sought. 

Data needs: Historical data for correlations in changes. 

Resources 
Software: None generally used. 

Causal (Loop) 
Diagrams 

Causal Loop Diagrams (CLD, also Causal Diagrams or Influence Diagrams) focus 
on the causal links within a system that relate to change over time. Two 
components of a system are linked if a change in one causes a change in the 
other. The link is depicted as an arrow from the cause to the effect. Each arrow 
also has a ‘+’ or ‘-‘ to indicate whether an increase in the cause leads to an 
increase or decrease in the effect respectively. 

An example Causal Loop Diagram is at Figure 4, showing the predator-prey 
relationship between foxes and rabbits. Births and natural deaths increase as 
population increases and, in turn, increase and decrease population respectively. 
Rabbits Eaten is of particular interest is; as Foxes increase, they eat more rabbits, 
which increases rabbit deaths and decreases fox deaths. 
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This example also displays a key feature of CLDs, feedback loops. A cycle of 
arrows from one system element to another and eventually to the original is 
referred to as a feedback loop (such as RabbitsEaten to FoxDeaths to FoxPopn to 
RabbitsEaten). If the number of negative arrows is even, the loop is a positive 
feedback or reinforcing loop. Any change is exaggerated, leading to exponential 
growth (or decay). On the other hand, if the number of negative arrows is odd, 
the loop is a negative feedback or balancing loop. Any change is damped within 
the system.  

Identifying and classifying the strongest feedback loops can provide insight into 
the system’s behaviour without quantitative input. CLDs are often used as part of 
the model design process for System Dynamics Models.  

 

Figure 3: Causal Loop Diagram for the predator prey system (Adapted from Vensim 
sample models www.vensim.com) 

Key features 
What it answers:  How changes in one part of the system flow through to 

other parts and the system as a whole.  

What is highlighted: System response to changes and feedback loops.  

Inputs: Components of a system that change over time. 

Causal relationships between changes in system parts. 

Outputs: Documentation of system structure. 

Relationships: Direction of change in one system element caused by 
another system element.  

Traps: Difficult to document indirect influences such as 
constraints or limits. 

Handling uncertainty: Nil 

Data needs: Supporting information for claims of influence. 

Resources 
References: Roberts et al 1983, Introduction to Computer 

Simulation: The System Dynamics Modeling Approach 

Software: Vensim, by Ventana Systems (www.vensim.com). 

RabbitPopnRabbitBirths
RabbitDeaths

FoxPopnFoxBirths

FoxDeaths

+

+

-

+

+
-

+

+

RabbitsEaten

+

-+
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QUANTITATIVE 
AGGREGATE 
MODELS 

Quantitative aggregate models use equations to describe relationships between 
the averages of pairs (or larger groups) of system components. The model is 
simply the set of equations. All models in this category have two limitations. The 
first is that confining the relationships to averages can be misleading when the 
average is not a meaningful description of the behaviour of the system part. The 
other limitation arises from the focus on parts of the system that can be 
quantified. Any system aspect that has substantial qualitative aspects cannot be 
modelled with these methods. This may also contribute to missing connections 
between quantitative measures, where a qualitative component connects them. 
For example, a link between duration of a treatment program and success is 
clearer with an intermediate link through quality of treatment. 

Function Fitting 
and Regression 

Regression assumes that one system measure of interest is dependent only on 
the values of some set of explanatory system measures. The purpose of 
regression is to use empirical data to fit a specific functional form that relates the 
value of interest to the values of the explanatory measures. Regression is a 
specific example of fitting a function that links input and output data. 

For example, a dataset that contains the height, weight and age of many children 
could be used to estimate weight from a combination of age and height. It could 
also be used to estimate height from age. Both of these would be valid uses of 
regression. 

The functional form must be provided in advance and cannot be derived from the 
regression. The same example dataset could be used to estimate age from a 
combination of height and weight. However, some thought suggests that weight 
depends on age and height, but age does not depend on height and weight. 
Regression cannot identify the correct interpretation; a statistically significant 
model could equally be developed for the invalid functional form. 

Regression is particularly used for economic models. The related statistical 
modelling technique of time series analysis is used where time is one of the 
variables. Factor analysis or principal component analysis may be used prior to 
regression to identify a smaller set of system aspects on which to build the 
model. 

Key features 
What it answers:  Identifies the best fit version of a predefined function 

that relates one system aspect to a set of other aspects.  

What is highlighted: The explanatory power of a particular function.  

Inputs: Dataset that contains multiple instances of sets of 
system measures. 

Expected functional form relating one aspect to all other 
aspects. 

Outputs: Coefficients for the predefined function. 

Estimate of how well the model fits. 

Relationships: One aspect assumed to depend on the other system 
aspects. 

Traps: Identifies associations, not causal relationships. 

Different definitions of ‘best fit’ will select different 
model parameters. Generally used is the sum of the 
square of the errors (difference between estimate and 
actual), which strongly weights data outliers. 
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Incorrect interpretation of large or highly significant 
coefficients as the most important associations. 

Limited capacity to assess whether the predetermined 
functional form is valid. 

Handling uncertainty: Difference between predicted and actual result is 
minimised. 

Specific use of goodness of fit and residuals tests to 
assess whether derived model fits the data. 

Data needs: Dataset with multiple records that each contains values 
for each of the system aspects of interest. 

Resources 
References: Any statistics textbook 

Software: Spreadsheets (eg Excel) for small applications. 

Specialist statistical packages such as R (open source), 
SAS, Stata and SPSS. 

Bayesian Nets Bayesian Nets (BN, also Bayes Nets, Bayesian Networks and Belief Networks) depict 
conditional probability relationships. The nodes in the network represent system 
components and the links represent probabilistic dependencies between the states 
of those components. The network summarises the joint probability distribution of 
the component states. The network can be used to estimate the probability of 
specific states given information about some other states. 

An example network is shown at Figure 4. The ‘Explosion’ node depends on the 
‘Oxygen’ and ‘Hydrogen’ nodes. That is, the probability of an explosion depends on 
whether oxygen and hydrogen are both present (see Table 1). 

 

Figure 4: Bayesian Net screenshot from GeNIe (Decision Software Laboratory at 
http://genie.sis.pitt.edu) depicting the probability of an explosion and the ability of 
sensors to detect relevant factors. 

Table 1: Probability structure for 'Explosion' node. 

Present? Yes No 

O yes / H yes 0.9 0.1 

O yes / H no 0 1 

O no / H yes 0 1 

O no / H no 0 1 

 

 

Key features 
What it answers:  Probability that specific system component states 

are true, given knowledge of other (relevantly 
influential) system states.  
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What is highlighted: Probability dependencies between system 
component states.  

Inputs: Set of probabilistic dependencies between states of 
system entities. 

Outputs: Probability of unobserved states. 

Relationships: Conditional probabilities. 

Traps: Confidence in the belief is not represented. That is, 
an estimate of probability based on research or 
data has no greater influence on the model than a 
‘guess’. 

Handling uncertainty: The probability distributions can be subjective 
beliefs rather than based on relative frequencies. 

Data needs: Sufficient to justify belief structure. 

Resources 
Software: GeNIe, by University of Pittsburg 

(genie.sis.pitt.edu) 

System of 
Differential 
Equations/ 
Dynamical 
systems 

Differential equations (DE) describe the change in a system as some function of 
the current values within the system. Unlike simulation techniques where time is 
updated in discrete steps, DEs deal with continuous time. The system is described 
by a set of DEs, which must be solved simultaneously. In many cases, the 
mathematics of a system of DEs is intractable. That is, the function describing the 
system at any time cannot be derived through mathematical manipulation. 
However, certain features of the system may be tractable, such as equilibrium 
points, using the techniques of dynamical system analysis. 

For example, the predator prey model first shown in Figure 4 can be quantified 
with the Lotka-Volterra equations:  

 

α β

γ δ α β γ δ

= − +

= −

where  is foxes,  is rabbits

, , ,  are constants

dF
F FR F R

dt

dR
R FR

dt

 

In this formulation, the constants α and γ represent the difference between birth 
and death rates for foxes and rabbits respectively in the absence of the other 
subpopulation. The number of rabbits eaten by foxes is proportional to the 
probability of meeting, with β and δ converting this probability to the impact of 
these meetings on the rabbit and fox populations. Analytical techniques can be 
used to identify the fox to rabbit ratio at which the system is stable. At other 
ratios, the system oscillates: rabbits increase until there is sufficient food supply 
for foxes to increase, but then the high number of foxes leads to a shortage in 
the rabbit supply and foxes starve, which then allows the rabbit population to 
increase again.  

Key features 
What it answers:  Gives a complete description of the system at any point 

in time.  

What is highlighted: A complete description of the system.  

Inputs: Equations that relate the change in a system over time 
to the state of the system. 
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Outputs: State of the system at any time (if tractable). 

Relationships: Equations relate change in the system to state of the 
system. 

Traps: Only tractable for systems with few variables. 

Only includes quantitative information. 

Handling uncertainty: Nil 

Data needs: Nil 

Resources 
Software: Specialist mathematical software, such as Mathematica, 

Matlab or SciLab. 

System Dynamics System Dynamics (SD) enables numerical analysis of a system of differential 
equations. The model consists of entities and an equation for each entity that 
includes other relevant entities and values. Arrows indicate those entities that 
contribute to an equation. SD uses the analogy of stocks and flows to represent 
amounts and changes in amounts respectively. Other structures in the system 
provide auxiliary information needed to create the equations. 

Time is incremented in discrete steps, so flows are defined per unit time. At each 
time step the equations are calculated based on current values, including 
integration over time. All values are then updated synchronously in preparation for 
the next timestep. 

An example System Dynamics model diagram is at Figure 5 and builds on the 
causal loops example provided in Figure 4. The fox and rabbit populations are 
stocks, which increase with the inflow of births and decrease with the outflow of 
deaths. The flexibility of SD models enables complex equations to be included, in 
this case concerning the impact of population ratios on the number of rabbits eaten 
by foxes and consequently on fox mortality. 

 

Figure 5: System Dynamics diagram for the predator prey system (Adapted from 
Vensim sample models www.vensim.com). The equations must also be specified to 
complete the model. 

Key features 
What it answers:  How the whole system behaves over time.  

What is highlighted: Connections between aggregate aspects of the system, 
with each aspect represented by an average or typical 
value. 
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Inputs: Model structure based on stocks, flows and information. 

Quantitative estimates of the relationship between a set 
of causes and the combined effect for each aspect of 
the system. Values for each system aspect at the initial 
time. 

Outputs: Aggregate value for each system element at each point 
in time. 

Relationships: Equations are necessary for each system element that 
describes how it responds to the state of input 
influences. 

Traps: Only includes quantitative information. 

Underlying time step must be small compared to natural 
times within system to avoid artificial behaviour. 

Handling uncertainty: Sensitivity analysis can be used, constructing multiple 
simulations with information values drawn from 
distributions. 

Data needs: Data required for calibration of the model. 

Resources 
References: Sterman 2000, Business Dynamics: Systems Thinking 

and Modeling for a Complex World. 

Software: Vensim, by Ventana Systems (www.vensim.com).  

Powersim Studio (www.powersim.com)  

STELLA / iThink, by isee systems 
(www.iseesystems.com)  

Evolutionary 
Algorithms 

Evolutionary Algorithms (EAs) are used to identify optimal solutions to a quantitative 
problem where the optimum cannot be found with analytical methods. An initial 
population of trial solutions is generated randomly. The value of the system for each 
of these solutions is calculated. The next population of trial solutions is generated by 
combining the better solutions. 

For example, the ‘hill climb’ approach can be used to search for the maximum of a 
complex function. The function is calculated for several input values. The next 
generation would then be sampled from values near the initial values that had higher 
values of the function. 

Another type of application is training a computer system to classify. For this 
application, the number of errors in classification is to be minimised, without 
specifying the classification rules in advance. 

Key features 
What it answers:  Where are the near optimal points (that is, maximum or 

minimum) for some complex function?  

What is highlighted: Extreme values for a specific mathematical function.  

Inputs: Function to be optimised. 

Process to select next generation of trial solutions. 

Outputs: Sets of variable values with ‘good’ results. 

Relationships: Function that converts input sets of values to a result. 
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Traps: Difficult to find solutions where the function is 
discontinuous or very steep, as geometrically close points 
do not necessarily have similar function values. 

Handling uncertainty: Uses probability to generate each succeeding population 
of test solutions so that some diversity in spaces being 
search is maintained. 

Data needs: Depends on application. Generally nil for optimising a 
function and a training dataset for a classifier. 

INDIVIDUAL 
ORIENTED 
MODELS 

Individual oriented modelling techniques track individuals and calculate results by 
counting the relevant individuals. These are often referred to as ‘bottom up’ 
approaches as the model works at the lowest level within the system, explicitly 
representing only local interactions. Depending on the technique and the application, 
the individuals may be of different types and, within a type, may display different 
characteristics. 

Cellular Automata Cellular automata (CA) models are particularly effective for processes where physical 
location and geographical neighbourhoods are the most important cause of system 
change. 

The archetypal model is Conway’s game of life. The game starts with a 2D grid of 
cells that may be ‘alive’ (dark blue in Figure 6) or ‘dead’. Whether a cell is alive in the 
next timestep is determined by its current status (dead or alive) and how many of the 
eight cells it is touching are alive. All cells are updated simultaneously and 
characteristic patterns emerge quickly. 

More generally, a CA model has two components, a grid and a set of rules. The grid 
is typically made up of square cells set out in two dimensions and wrapped top to 
bottom (that is, the neighbours of the cells in the top row include cells in the bottom 
row) and right to left. However, grids can use identical cells of any shape in any 
number of dimensions. The rules define neighbourhoods and how the features of the 
relevant neighbourhood update the state of each cell. For some applications, the rule 
set may include a small probability of a random state update. 

Typical applications of a relatively sophisticated CA model include the spread of 
disease in a crop, the spread of a bushfire or changes in opinion. However, the 
uniform nature of the structure limits the capacity to develop useful CA models. Refer 
to Agent Based Models and Social Network Analysis techniques for related but more 
realistic models. 

 

Figure 6: Screenshots from JAVA implementation of Conway's Game of Life (Hensel 
2001): initialisation (left) and after several timesteps (right). 



 

INTEGRATION INSIGHTS #12  17

 

Key features 
What it answers:  How do signals move through a geographically fixed 

population?  

What is highlighted: Influence of geographical neighbours.  

Inputs: Grid representing a physical space with uniform 
characteristics. 

Rules defining how a cell’s state is affected by the states 
of neighbouring cells. 

Outputs: Stable repeating patterns of state changes, or 
completely fixed cell states. 

Relationships: Cells represent people, businesses, vegetation or any 
entity that is physically fixed but able to change state. 

Influential cells are entirely defined by neighbourhood. 

Traps: Cells and rules are identical so there is no variation in 
cell responses or behaviour. 

No variation in susceptibility to influence, strength of 
influence on neighbours, and number of neighbours. 

Handling uncertainty: Different initial states will lead to different stable 
patterns. Sets of simulations can be used to estimate 
the probability of particular patterns emerging. 

Data needs: Calibration data for transmission speed. 

Resources 
References: Gilbert and Troitzsch 1999, Simulation for the Social 

Scientist 

Software: Any Agent Based Model software can be used to 
develop CA models (eg NetLogo, RePast). 

MatLab can be adapted naturally, with a matrix to 
represent the grid and matrix elements to represent cell 
states. 

Microsimulation Microsimulation models are effective where individuals do not interact with each other 
and have many characteristics that affect some issue of interest. A typical use would 
be to calculate and compare the effect of a proposed taxation change on household 
income for different population groups (such as single parents of two children with an 
income of about $50,000 per year). 

The general process starts with a detailed unit record dataset, such as a census file. A 
single record represents multiple people with the same set of characteristics and the 
record includes a weight to identify the number of people represented. Other detailed 
datasets are merged for additional characteristics. This merging uses fine cross-
tabulations based on data items common to both datasets. The unit records are also 
‘aged’ as necessary to update for changes in the population. For example, detailed 
death rates are used to reduce weights in accordance with expected deaths, and 
incomes are altered in accordance with changes in income distribution over time. 
Finally, the relevant policy is applied to each record and its effect calculated. The 
average effect is then calculated from the record specific effect and the record’s 
weight. 
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Key features 
What it answers:  The effect of a policy on specific subpopulations.  

What is highlighted: Winners and losers for each policy option.  

Inputs: Detailed datasets describing population characteristics. 

Proposed policy rules, including application and effect. 

Outputs: Impact of policy by population group. 

Relationships: None; the individuals modelled do not interact with each 
other. 

Traps: Ignores interactions between people and responses of 
people to a changing environment. 

Handling uncertainty: Statistical methods are used for dataset matching and 
ageing of the datasets. 

Data needs: Large detailed datasets from major national collections. 

Resources 
References: Gilbert and Troitzsch 1999, Simulation for the Social 

Scientist 

Software: Specialist statistical packages that efficiently process 
large datasets, such as SAS, Stata and SPSS. 

Agent Based 
Models 

Agent Based Modelling (ABM) is a very flexible bottom up modelling technique. It is 
generally used to explore possible ways in which simple individual behaviour can 
result in recognisable group patterns, and how those patterns are affected by 
differences in the individual behaviour. Very detailed (high fidelity) ABMs have also 
been developed for forecasting in social or economic systems. Multiple simulations 
are used to estimate the relative frequency of different patterns. 

In ABMs, each agent represents a single person, firm or other entity that can change 
state and display behaviour. The behaviour of agents responds to current state, 
personal characteristics, environment and rules. The environment includes any 
features of the agent’s location and the states of agents that are geographical or 
network neighbours. Behaviour rules can be different for each agent and can change 
over time. 

The archetypal model is SugarScape (Epstein & Axtell 1996). This is a simple ABM 
with a regular grid of cells representing the landscape. Some landscape cells have 
resources (sugar or spice). Agents deplete resources by moving around the 
landscape, but can add resources when they land on appropriate cells (see Figure 7). 

The implementation of the predator-prey model as an ABM is very different to a 
model using differential equations (as shown in Figure 6). Two types of agents would 
be established: predator (fox) and prey (rabbit). Each fox or rabbit would have some 
probability of giving birth or dying in each timestep. In addition, the foxes and rabbits 
would move around and, if they landed in the same place, the fox would eat the 
rabbit. Foxes would also die after some number of timesteps without eating a rabbit. 
Average results over many simulations would be expected to replicate the dynamic 
behaviour arising in SD models. 

More sophisticated ABMs are used to develop a broad range of artificial societies. 
They can be used to simulate economic markets, where goods are traded based on 
the individual preferences of buyers and sellers. They can model the transmission of 
disease, with individual people only becoming infected where a neighbour is 
infectious, each person has a susceptibility that affects probability of transmission and 
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the infectivity of the disease varies over the period of a person’s infectious state. For 
belief models, a person’s opinion can be affected by how many of their friends have 
specific opinions and how influential those friends are and their own tendency to be 
influenced by others. Other applications include transport systems and crowd 
behaviour. 

 

 
Figure 7: Screenshot of NetLogo SugarScape implementation (Wilensky 1999; Li & 
Wilensky 2009). Dots are agents and grid squares are coloured by resource amounts. 

Key features 
What it answers:  What social patterns emerge from simple behaviour of 

individuals?  

What is highlighted: The relationship between individual behaviour and group 
behaviour.  

Inputs: Personal characteristics for each agent. 

Behaviour rules (may vary by agent, or may be based on 
characteristics that vary by agent), which can include 
movement. 

Pattern of connections between agents. 

Outputs: Aggregate measures of system behaviour over time. 

Measures of variation within the system, such as 
distribution of resources. 

Relationships: Agents represent people, businesses or any other entity 
that can display behaviour (changing state). 

Physical location represents geographical environment, 
which may have features such as resource availability. 

Network links represent relationships between influential 
agents. 

Rules describe the relationship between agent behaviour 
and the influence of other agents and location. 

Traps: It can be difficult to interpret results as the connection 
between individual behaviour and system behaviour is 
visible only through repeated simulation. 
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Handling uncertainty: Individual simulations generate different results. Large 
numbers of simulations are run to estimate relative 
frequency of patterns of social behaviour. 

Data needs: Minimal for models that are intended to explore how 
certain behaviour can emerge as they are not calibrated 
to real world systems. 

For real world problems: 

• Detailed data concerning the distribution of relevant 
behaviours and contacts, and the process of 
transmission or influence. 

• System aggregate data for calibration. 

Resources 
References: Gilbert 2008, Agent-Based Models. 

Software: CORMAS (http://cormas.cirad.fr/en/outil/outil.htm): 
Oriented to environmental research. 

NetLogo (http://ccl.northwestern.edu/netlogo): Easy to 
learn and good for relatively simple models. 

MASON (http://cs.gmu.edu/~eclab/projects/mason): 
Specialised for large number of agents. 

RePast (http://repast.sourceforge.net) 

Swarm (www.swarm.org) 

Discrete Event 
Simulation 

Discrete Event Simulation is used to model systems where there are processes of 
known duration and queues for resources. Typical applications include assembly lines, 
queuing systems (such as customer service) and supply chains (see Figure 8). 

The general approach is to program a sequence of events, including arrivals, 
conveyors and assembly points. Each event can trigger a future event. For example, 
an arrival will also generate the time for the next arrival, and completing a process 
may move a waiting person or item from the queue and restart the same process. 
The simulation moves from event to event (in sequential order) rather than updating 
in regular time. 

 

 

Figure 8: Screenshot of section of ExtendSim demonstration model of a yoghurt 
manufacturing process (ExtendSim model copyright © 1987-2010 Imagine That Inc. 
All rights reserved). 
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Key features 
What it answers:  Identifies bottlenecks and allows trialling of options to 

improve efficiency.  

What is highlighted: How constraints in the system affect overall system 
performance.  

Inputs: Distribution of entry to the system. 

Processes within the system and duration information. 

Paths that persons or items follow through the system. 

Outputs: Statistical information concerning any object in the 
system, such as average queue length and waiting time. 

Relationships: Sequence of processes within the system. 

Traps: For processes that involve people, any changes over time 
in the behaviour of people are ignored. For example, if 
bank queues are always long, arrivals to the bank may 
reduce over time as people decide to bank elsewhere. 

Handling uncertainty: System reports can include various statistical measures 
that include averages and variation. 

Data needs: Relatively straightforward information about processing 
time. 

Resources 
Software: Simul8, by Simul8 Corporation (www.simul8.com) 

ExtendSim, Imagine That (www.extendsim.com) 

Social Network 
Analysis 

Social Network Analysis (SNA) focuses on the structure of the relationships between 
entities (generally people, households or organisations). Each entity is represented by 
a node (or vertex or actor) and two nodes are connected by an edge (or link or arc) if 
they have the specified relationship. The same set of nodes can have different sets of 
edges and hence networks, each representing a different relationship. Typical 
relationships of interest include friendship or capacity to influence. 

More sophisticated models can set weights for the edges to represent, for example, 
strong and weak friendship, but generally the edge exists or does not exist. Also, 
relationships can be directional (that is, A is a friend of B does not mean that B is a 
friend of A) or undirected (such as ‘work together’). Directed relationships are 
denoted with an arrow.  

While the network model is qualitative in the sense that it describes only the 
existence of a particular relationship, many of the analysis techniques are quantitative 
and enable comparisons between individuals or groups within the network. Typical 
applications identify clusters within the network, highly influential individuals, or 
locations within the network where transmission could be stopped.  

A typical application is shown in Figure 9, which depicts a high school friendship 
network, with nodes coloured by race and year groups indicated by shape of the 
node (Moody, 2001). Race segregation is clearly visible and, in contrast, different age 
groups mix well.  
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Figure 9: US high school friendship network demonstrating same race preference but 
mixing of year groups (Moody, 2001, Figure 1). 

Key features 
What it answers:  What is the role of social structure in the system?  

What is highlighted: Connections between individuals that make up a system.  

Inputs: The pairs of individuals with the relationship of interest. 

Outputs: Documentation of relationship structure. 

Relationships: Specified in the definition of the network of interest.  

Traps: Most relationships are strong/weak rather than yes/no but 
the analysis techniques are less able to deal with 
weighted edges. 

Handling uncertainty: Generally minimal. 

Can construct sets of randomly generated networks with a 
small number of specific features to assess the statistical 
significance of some features of the specific network. 

Data needs: Whether the relationship exists for every pair of nodes. 

Resources 
References: Newman 2003, The structure and function of complex 

networks 

Software: Pajek (http://pajek.imfm.si/doku.php?id=pajek) 

UCINet by Analytical Technologies 
(http://www.analytictech.com/ucinet) 
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